Φωτοκαταλυτική Οξείδωση του Clopyralid σε εργαστηριακή κλίμακα

Σχήμα 1: Φάσμα οπτικής απορρόφησης του CLPR.

Σχήμα 2: Φωτοκαταλυτική αποικοδόμηση 40 mgL⁻¹CLPR παρουσία διαφορετικών καταλυτών αρχικής συγκέντρωσης 0,5g L⁻¹. [■] TiO₂ P25, (●) UV-100, (▲) ZnO, (▼) Kronos 7500 και UVA, (◄) Kronos 7000 και UVA, (►) Kronos 7000 και Visible, (♦) Kronos 7001 και UVA.

PHOTOWETSUN / 957

Σχήμα 3: Φωτοκαταλυτική αποικοδόμηση 40 mgL⁻¹CLPR παρουσία: (■] 0,5 g L⁻¹TiO₂ P25, 100 mg L⁻¹
H₂O₂, UV-A, (●) 100 mgL⁻¹ H₂O₂, UV-A, (▲) 100 mgL⁻¹ H₂O₂, απουσία φωτισμού, (▼) 0,5 g L⁻¹TiO₂ P25, UV-A.

Σχήμα 4: Φωτοκαταλυτική αποικοδόμηση 40 mg L⁻¹ CLPR με το αντιδραστήριο photo-Fenton παρουσία 7 mgL⁻¹ Fe³⁺και διαφορετικών συγκεντρώσεων H₂O₂.[**■**] 200 mg L⁻¹ H₂O₂: (•) 150 mg L⁻¹ H₂O₂, (▲) 100 mg L⁻¹H₂O₂, (▼) 75 mg L⁻¹H₂O₂, (◄) 50 mg L⁻¹H₂O₂, (►) 25 mg L⁻¹H₂O₂, (♦) 0 mg L⁻¹H₂O₂.

Σχήμα 5: Φωτοκαταλυτική ανοργανοποίηση 40 mg L⁻¹ CLPR παρουσία 0,5 g L⁻¹TiO₂ P25 και UV-A ακτινοβολίας σε: [■] pH: 3, (●) pH: 5, (▲) pH: 7, (▼) pH: 9.

Σχήμα 6: Απελευθέρωση χλωριούχων κατά την φωτοκαταλυτική ανοργανοποίηση 40 mg L⁻¹ CLPR και UV-A ακτινοβολίας: (■) 0,5 g L⁻¹TiO₂ P25, (●) 0,5 g L⁻¹TiO₂ P25, 100 mg L⁻¹ H₂O₂, (▲) 0,5 g L⁻¹TiO₂ UV-100, (▼) 0,5 g L⁻¹TiO₂ UV-100, 100 mg L⁻¹ H₂O₂.

PHOTOWETSUN / 957

ΑΡΙΣΤΕΙΑ Ι

Σχήμα 7: Απελευθέρωση νιτρικών (NO₃⁻) κατά την φωτοκαταλυτική ανοργανοποίηση 40 mg L⁻¹ CLPR παρουσία UV-A ακτινοβολίας παρουσία: (■) 0,5 g L⁻¹TiO₂ P25, (●) 0,5 g L⁻¹TiO₂P 25, 100 mg L⁻¹ H₂O₂, (▲) 0,5 g L⁻¹TiO₂ UV-100, (▼) 0,5 g L⁻¹TiO₂ UV-100, 100 mg L⁻¹ H₂O₂, (◀) 7 mg L⁻¹Fe³⁺ και 100 mg L⁻¹H₂O₂.

PHOTOWETSUN / 957

Σχήμα 8: Πορεία μετασχηματισμού του Clopyralid.

Σχήμα 9: Αναστολή της φωταύγειας του βακτηρίου *V. Fischeri* σε συνάρτηση με το χρόνο φωτισμού, κατά την ετερογενή φωτοκαταλυτική οξείδωση του φυτοφαρμάκου CLPR παρουσία 0,5 g L^{-1} TiO₂P-25 και UV-A ακτινοβολίας.

Σχήμα 10: Αναστολή της φωταύγειας του βακτηρίου *V. Fischeri* σε συνάρτηση με το χρόνο φωτισμού, κατά τη φωτοκαταλυτική οξείδωση του φυτοφαρμάκου CLPR με το αντιδραστήριο photo-Fenton (7 mg L⁻¹ Fe³⁺, 100 mg L⁻¹ H₂O₂, και UV-Αακτινοβολία).

Φωτοκαταλυτική Οξείδωση του Bentazone σε εργαστηριακή κλίμακα

Σχήμα 11:Φάσμα οπτικής απορρόφησης του BNZ.

Σχήμα 12: Επίδραση της συγκέντρωσης του TiO₂P25 στον αρχικό ρυθμό αποικοδόμησης 20 mg L⁻¹ BNZ.

Σχήμα 13: Φωτοκαταλυτική οξείδωση 20 mg L⁻¹ του BNZ παρουσία 0,5 g L⁻¹και UV-A ακτινοβολίας:
(■) TiO₂ P-25, (●) TiO₂ Kronos 7500, (▲) TiO₂ Kronos 7000, (▼) TiO₂ UV-100 και (◄) ZnO.

Σχήμα 14: Φωτοκαταλυτική οξείδωση 20 mg L⁻¹ του BNZ παρουσία: (■) 0,5 g L⁻¹ Kronos 7000, (●) 0,5 g L⁻¹ Kronos 7000 και 50 mg L⁻¹ H₂O₂, (▲) 0,5 g L⁻¹ Kronos 7500, (▼) 50 mg L⁻¹ H₂O₂(◀) 0,5 g L⁻¹Kronos 7500 και 50 mg L⁻¹ H₂O₂, (►) 0,5 g L⁻¹TiO₂P25, (♦) 0,5 g L⁻¹TiO₂P25 και 50 mg L⁻¹H₂O₂ ακτινοβολίας.

Σχήμα 15: Φωτοκαταλυτική αποικοδόμηση 20 mg L⁻¹ BNZ παρουσία του αντιδραστηρίου photo-Fenton για συγκέντρωση 100 mg L⁻¹ H₂O₂ και για διαφορετικές συγκεντρώσεις Fe³⁺: [**■**] 1,75 mg L⁻¹ Fe³⁺, (**●**) 3.5 mg L⁻¹ Fe³⁺, (**▲**) 7 mg L⁻¹ Fe³⁺.

Σχήμα 16: Απελευθέρωση νιτρικών κατά την φωτοκαταλυτική ανοργανοποίηση 20 mg L⁻¹ BNZ παρουσία: (■) 0,5g L⁻¹TiO₂ P25, (●) 0,5g L⁻¹TiO₂P25 και 100 mg L⁻¹ H₂O₂, (▲) 0,5 mg L⁻¹TiO₂Kronos 7000, (▼) 0,5g L⁻¹TiO₂ Kronos και 100 mg L⁻¹ H₂O₂, (◄) 0,5g L⁻¹TiO₂ Kronos και ακτινοβολία ορατού,
(►) 7 mg L⁻¹ Fe³⁺ και 100 mg L⁻¹ H₂O₂.

PHOTOWETSUN / 957

Σχήμα 17: Απελευθέρωση ολικού αζώτου κατά την φωτοκαταλυτική ανοργανοποίηση 20 mgL⁻¹BNZ παρουσία: (■) 0,5gL⁻¹TiO₂ P25, (●) 0,5 g L⁻¹ TiO₂ P25 και 100 mg L⁻¹ H₂O₂, (▲) 0,5 mg L⁻¹ TiO₂ Kronos 7000, (▼) 0,5g L⁻¹ TiO₂ Kronos και 100 mg L⁻¹H₂O₂, (◄) 0,5g L⁻¹ TiO₂Kronos και ακτινοβολία ορατού,
(►) 7 mg L⁻¹ Fe³⁺ και 100 mg L⁻¹ H₂O₂.

PHOTOWETSUN / 957

Σχήμα 18:Προτεινόμενες πορείες διάσπασης του Bentazone και κύρια προϊόντα μετασχηματισμού.

Σχήμα 19: Αναστολή της φωταύγειας του βακτηρίου *V. Fischeri* σε συνάρτηση με το χρόνο φωτισμού, κατά την ετερογενή φωτοκαταλυτική οξείδωση του φυτοφαρμάκου BNZ παρουσία 0,5 g L^{-1} TiO₂ P-25 και UV-Αακτινοβολίας.

Φωτοκαταλυτική Οξείδωση του Thiacloprid σε εργαστηριακή κλίμακα

Σχήμα 20: Φάσμα οπτικής απορρόφησης του TCD.

Σχήμα 21: Φωτοκαταλυτική αποικοδόμηση 20 mg L⁻¹ TCD παρουσία διαφορετικών καταλυτών αρχικής συγκέντρωσης 0,5 g L⁻¹: [■] TiO₂ P25 και UV-A, (●) ZnO και UV-A, (▲) Kronos 7000 και ορατό, (▼) Kronos 7000 και UVA, (◀) Kronos 7500 και ορατό, (►) Kronos 7500 και U-A, (♦) UV-100 και UV-A.

Σχήμα 22: Φωτοκαταλυτική αποικοδόμηση 20 mg L⁻¹ TCD με το αντιδραστήριο photo-Fenton παρουσία 100 mg L⁻¹ H₂O₂, UV-A ακτινοβολίας και: [■] 20 mg L⁻¹ Fe³⁺, (●) 14 mg L⁻¹ Fe³⁺, (▲) 7 mg L⁻¹ Fe³⁺, (▼) 3,5 mg L⁻¹ Fe³⁺, (♦) 2 mg L⁻¹ Fe³⁺.

Σχήμα 23: Απελευθέρωση χλωριούχων κατά την φωτοκαταλυτική ανοργανοποίηση 20 mg L⁻¹ TCD, παρουσία UV-A ακτινοβολίας: (■) 0,5 g L⁻¹ TiO₂ P25, (●) 0,5 g L⁻¹ TiO₂ UV-100, (▲) 0,5 g L⁻¹ TiO₂ P25, 100 mg L⁻¹ H₂O₂, (▼) 0,5 g L⁻¹TiO₂ Kronos 7500, (◀) 0,5 g L⁻¹TiO₂ UV-100, 100 mg L⁻¹ H₂O₂ και (►) 0,5 g L⁻¹TiO₂ Kronos 7500, 100 mg L⁻¹ H₂O₂.

PHOTOWETSUN / 957

Σχήμα 24: Απελευθέρωση θείου κατά την φωτοκαταλυτική ανοργανοποίηση 20 mg L⁻¹ TCD παρουσία
UV-A ακτινοβολίας: (■) 0,5 g L⁻¹TiO₂ P25, (●) 0,5 g L⁻¹ TiO₂ UV-100, (▲) 0,5 g L⁻¹ TiO₂ P25, 100 mg L⁻¹
H₂O₂, (▼) 0,5 g L⁻¹TiO₂ UV-100, 100 mg L⁻¹H₂O₂, (◄) 3,5 mg L⁻¹Fe³⁺ και 100 mg L⁻¹H₂O₂.

Σχήμα 25: Προτεινόμενες πορείες διάσπασης του Thiacloprid και κύρια προϊόντα μετασχηματισμού.

Σχήμα 26: Αναστολή της φωταύγειας του βακτηρίου *V. Fischeri* σε συνάρτηση με το χρόνο φωτισμού, κατά την ετερογενή φωτοκαταλυτική οξείδωση του φυτοφαρμάκου TCD παρουσία 0,5 g L⁻¹ TiO₂ P-25 και UV-A ακτινοβολίας.

Πιλοτικός Φωτοκαταλυτικός Αντιδραστήρας

Σχήμα 27: Πλάγια όψη πιλοτικού φωτοκαταλυτικού αντιδραστήρα τύπου σιντριβανιού. Διακρίνεται επιπρόσθετα ο σωλήνας ανακυκλοφορίας του αποβλήτου στην Δεξαμενή Συλλογής Αποβλήτων.

Σχήμα 28: Πρόσοψη δεξαμενής καθίζησης. Μετά την καθίζηση του καταλύτη, το διαυγασμένο επεξεργασμένο απόβλητο, μέσω της βάνας που βρίσκεται στο επάνω μέρος, απορρίπτεται ή αποθηκεύεται σε δεξαμενή προκειμένου να διοχετευθεί στο σύστημα τεχνητών υγροτόπων. Με τη βοήθεια της βάνας που βρίσκεται στο κατώτερο τμήμα της δεξαμενής, ο καταλύτης λαμβάνεται προκειμένου να επαναχρησιμοποιηθεί ή να καθαριστεί και να απορριφθεί.

PHOTOWETSUN / 957

ΑΡΙΣΤΕΙΑ Ι

Τεχνητοί Υγρότοποι Οριζόντιας Ροής

Σχήμα 29. Οι τεχνητοι υγροτοποι με τα φυτά σε πλήρη ανάπτυξη.